On the Transformation of Continued Products into Continued Fractions
نویسندگان
چکیده
منابع مشابه
Generalized Continued Logarithms and Related Continued Fractions
We study continued logarithms as introduced by Bill Gosper and studied by J. Borwein et. al.. After providing an overview of the type I and type II generalizations of binary continued logarithms introduced by Borwein et. al., we focus on a new generalization to an arbitrary integer base b. We show that all of our so-called type III continued logarithms converge and all rational numbers have fin...
متن کاملContinued Logarithms and Associated Continued Fractions
We investigate some of the connections between continued fractions and continued logarithms. We study the binary continued logarithms as introduced by Bill Gosper and explore two generalizations of the continued logarithm to base b. We show convergence for them using equivalent forms of their corresponding continued fractions. Through numerical experimentation we discover that, for one such for...
متن کاملOn the entropy of Japanese continued fractions
We consider a one-parameter family of expanding interval maps {Tα}α∈[0,1] (japanese continued fractions) which include the Gauss map (α = 1) and the nearest integer and by-excess continued fraction maps (α = 1 2 , α = 0). We prove that the Kolmogorov-Sinai entropy h(α) of these maps depends continuously on the parameter and that h(α) → 0 as α → 0. Numerical results suggest that this convergence...
متن کاملOn the Extremal Theory of Continued Fractions
Letting x = [a1(x), a2(x), . . .] denote the continued fraction expansion of an irrational number x ∈ (0, 1), Khinchin proved that Sn(x) = ∑n k=1 ak(x) ∼ 1 log 2 n logn in measure, but not for almost every x. Diamond and Vaaler showed that removing the largest term from Sn(x), the previous asymptotics will hold almost everywhere, showing the crucial influence of the extreme terms of Sn(x) on th...
متن کاملPeriodic Continued Fractions And
We investigate when an algebraic function of the form φ(λ) = −B(λ)+ √ R(λ) A(λ) , where R(λ) is a polynomial of odd degree N = 2g + 1 with coefficients in C, can be written as a periodic α-fraction of the form
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the London Mathematical Society
سال: 1873
ISSN: 0024-6115
DOI: 10.1112/plms/s1-5.1.78